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Single Cooper-pair Box (SCB) — developed as a Qubit
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Single Cooper-pair Box (SCB)
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Quantum Capacitance Detector
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Proof of concept
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First prototype

(a) Nb Resonator Coupling capacitor
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(b) Antenna grounding Island Al absorber with Nb plugs
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1ol Bueno, J., Llombart, N., Day, P.K. &
Echternach, P.M. Optical characterization of
the quantum capacitance detector at

200 um. Appl. Phys. Lett. 99, 173503
(2011).
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Stone, K.J., et al. Real time quasiparticle tunneling
measurements on an illuminated quantum
capacitance detector. Appl. Phys. Lett. 100, 263509
(2012).

First array
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The Quantum Capacitance Detector

Response and noise as a function of

NEP as a function of optical signal

Photon shot noise limited!

optical signal
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Lens coupled mesh absorber LEQCD

* Need mesh absorber instead of antenna to better couple to spectrometer modes
* Lumped element resonator saves space and has better characteristics than CPW
half wave resonator
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Lens coupled mesh absorber LEQCD
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@ Lens coupled mesh absorber LEQCD

Island
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Measurement setup
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Measurement setup
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Lens coupled mesh absorber LEQCD @

 QCD response as a function of optical power
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NEP(W/Hz"?)

* NEP for various levels of optical illumination
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Lens coupled mesh absorber LEQCD
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NEP(W/rootHz)
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P1/2 dependence implies photon noise limited performance
Efficiency extracted form ratio of measured NEP and photon shot
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Should be able to detect single photons




Search for Single Photon Events — clues from DC biased time streams
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* Measure time trace while DC
biased
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How to filter out background tunneling

Gate sweep frequency << Tunneling in rate

—

o
o

o
~

o
(o2}

o
[N

Island Occupation Probability
o

o
-_—
N

3 4 5 6
Bias Voltage(2e/Cq)

X

-

o
N
[}

N

N

Ca(F)

0.5 I | | | L
0 1 2 3 4 5 6

Bias Voltage(2e/Cq)



How to filter out background tunneling

Gate sweep frequency > Tunneling in rate — effect of photon absorption
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How to filter out background tunneling

Gate sweep frequency > Tunneling in rate — effect of background tunneling =

e-shifts
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How to filter out background tunneling
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“ Fast sweep reveals single photon events spoiling QC signal

*  Sweep rate ~ 22kHz spanning 3 Quantum Capacitance Peaks => effective sweep rate ~ 66kHz

*  Should block background tunneling while still allowing tunneling due to single photon absorption
* Raw QC time trace should be absolutely periodic

*  Gaps are due to high tunneling suppressing the Quantum Capacitance signal

* Therefore Gaps should be due to single photon absorption
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Variance evaluated in 30 us bins shows photon events

*  From time traces calculated variance of slices corresponding to 2 QC peaks (to avoid problems at
the edge of sweep with e-shifts) — slices are 30us long

*  Subtracted this trace from the maximum of the traces

*  Gaps in the Quantum Capacitance trace will show up as peaks

* Repeat for different black body source temperatures
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Photon arrival intervals follow Poisson statistics

*  From the photon time traces, extract dwell time histograms — exponential decay corresponds to
Poisson statistics

*  Calculate probability of having N photons within a time interval 36ms (Arbitrarily picked)

*  Plot probability x number of photons; blue circles is measured, lines are calculated Poisson
distribution probability (no fit, just using measured average number of photons)
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Counts

Photon arrival statistics

Cold black body

Histogram of response for various black TR
body temperatures o
For cold black body only peak around
0.25 exists weer
For hot black body peak around 0.6-0.7 =0r
is larger than peak at 0.25
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* Peaks get closer together at high black body temperatures due to filtering by the
resonator of the high frequency stream
* Could lower resonator Q by stronger coupling at the expense of fewer channels
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Counts of response between 0.6 and 0.9 versus number of expected photons
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Free space spectrometer

Free space grating
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Detector Facets |

7 * Free space grating to avoid
fragility of silicon input feed

« 860GHzto 1.8THz, 550-
950GHz for silicon
spectrometer

e R ™~ 140 (600 measured on
silicon spectrometer)

* 3 detector chips as opposed
to 19. Easier assembly and
better RF performance

Matt Bradford

Grating




@ Grating spectrometer design

Theodore Reck, Darren Hayton, Matt Bradford and Maria Alonso



@ Grating spectrometer design




Multiplexed readout X300 USRP — Ettus research

e Uses libraries that are
E 2 1| pac ““Quadrature mixer called by python
£ e \ ' To cryostat scripts
B 2 2 |
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19 channels readout simultaneously
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Real time measurements
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Real time measurements
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5x5 array of low frequency readout QCDs

614 to 644 MHz
Consume less power
Higher Q resonators
Samller frequency
spacing



5x5 array of low frequency readout QCDs
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Conclusion

QCDs are the most sensitive far-IR detectors

Meet NEP requirements of the Origins Space Telescope
Photon counting in the far-Infrared demonstrated
Small array with multiplexed readout demonstrated
Working on Spectrometer demonstrations

Lower readout Frequency demonstrated

Working on large arrays of photon counters

Thank you for your attention!




